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ABSTRACT

Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of hu-
man immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated
in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential
solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy.
Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its im-
munogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 �g/ml, al-
though immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected
against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-
HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses
are controlled.

IMPORTANCE

Sustained interventions that can prevent HIV-1 infection are needed to halt the spread of the HIV-1 pandemic. The protective
capacity of anti-HIV antibody gene therapy has been established in mouse models of HIV-1 infection but has not been estab-
lished for primates. We show here a proof-of-concept that gene transfer of anti-HIV antibody genes can protect against infection
by viruses that cause AIDS in primates when host immune responses are controlled.

Broadly neutralizing antibodies (bnAbs) arise in human immu-
nodeficiency virus type 1 (HIV-1)-infected individuals to var-

ious degrees (1–3), but vaccination to elicit such antibodies re-
mains a challenge (4–6). An increasing number of potent bnAbs
have been isolated in recent years from HIV-infected individuals
(7–12). These bnAbs represent potential components for passive
immunization in humans based on the finding that they protect
nonhuman primates at physiologically achievable concentrations
(13–16).

The transduction of long-lived cells with a viral vector encod-
ing the heavy and light chain genes of bnAbs, also known as vec-
tored immunoprophylaxis, aims to protect against HIV-1 infec-
tion by conferring expression of protective antibodies (17–20). In
particular, viral vectors derived from adeno-associated virus (AAV)
have yielded sustained expression of multiple bnAbs in mice (17, 20).
These bnAbs confer neutralizing activity in the plasma of the mice
and thereby protect humanized mice against intraperitoneal, intrave-
nous, and mucosal HIV-1 challenge (20, 21).

Nonhuman primate models of HIV-1 infection represent the
most appropriate model to assess the ability of antibodies to pro-
tect against infection (22–24). The comparable physiology of mu-
cosal tissues, their relatively large size, and their similar immune
system (25) give nonhuman primates distinct advantages over hu-
manized mice for assessing the potential to protect against muco-
sal transmission of HIV-1 in humans. However, in the context of

gene delivery, antibody persistence, localization, and protection
against mucosal infection have not been well studied in nonhu-
man primates. A previous study conducted with nonhuman pri-
mates advanced this concept by using recombinant AAV1 vectors
to deliver genes encoding antibody-like molecules called immu-
noadhesins (26). The immunoadhesins were expressed for �1
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year after gene transfer and protected most macaques against in-
travenous simian immunodeficiency virus (SIV) challenge (26,
27). It has yet to be shown whether full-length human antibodies
composed of natural heavy and light chains can be delivered
through vectored gene transfer to similarly prevent simian-hu-
man immunodeficiency virus (SHIV) infection in nonhuman
primates. Additionally, despite being derived from a macaque an-
tibody sequence, the recombinant immunoadhesins were immu-
nogenic in 33% of the macaques expressing them (26). Later stud-
ies showed that immunoadhesins possess reduced neutralization
activity compared to that of full-length antibodies (28). Thus, ex-
pression of full-length antibodies in primates remains a goal for
clinical development of vectored immunoprophylaxis.

Long-term functional analysis of human bnAbs in nonhuman
primates can be complicated by macaque immune responses
against the human antibody (29, 30). In our previous studies ex-
amining the durability of protection by passive transfer of anti-
body protein, we observed macaque responses within weeks
against the human antibody in �50% of macaques administered a
single dose of 20 mg/kg of body weight of human VRC01 IgG (31).
The immunogenicity of human proteins in nonhuman primates is
a limitation of this model system, but it is not predictive of or
relevant to immunogenicity in humans (30). The immunogenic-
ity of human VRC01 was reduced by simianizing the antibody to
create a macaque version of VRC01, which, when administered at
20 mg/kg, produced no detectable anti-VRC01 response (31). Al-
though AAV8-vectored gene transfer has been proposed to reduce
the immunogenicity of the transgene (32), human proteins such
as factor IX elicit a humoral response in macaques when delivered
by AAV8 vectors (33). The use of two immunosuppressants, cy-
closporine (CsA) and rituximab, suppressed the macaque hu-
moral response targeting factor IX, allowing the assessment of its
function in macaques (33). We reasoned that it might be possible
to control the immunogenicity of human antibodies in nonhu-
man primates using the above-mentioned approaches, allowing
the examination of protection by AAV8-vectored bnAb gene
transfer.

In this study, we assess the ability of recombinant AAV8 vec-
tors to deliver a neutralizing antibody to protect against mucosal
SHIV-BaLP4 challenge in nonhuman primates. We administered
AAV8 vectors encoding a simianized version of the bnAb VRC07
with and without transient immunosuppressive treatment in rhe-
sus macaques and demonstrate the efficacy of vectored bnAb im-
munoprophylaxis to protect against mucosal SHIV challenge.

MATERIALS AND METHODS
Animals. Indian-origin rhesus macaques (Macaca mulatta) weighing be-
tween 4 and 10 kg were used for nonhuman primate studies. The ma-
caques were screened for AAV8 neutralizing antibodies prior to inclusion
in AAV studies. Only macaques with plasma neutralization 50% inhibi-
tory dilution (ID50) titers of �1:20 were included. Macaques enrolled in
SHIV-BaLP4 challenge studies weighed between 4 and 5 kg and were
subjected to routine clinical evaluation. C.B-17 SCID mice were pur-
chased from Taconic. Veterinary procedures were approved by the Vac-
cine Research Center Animal Care and Use Committee. All animals were
housed and cared for in accordance with local, state, federal, and institute
policies in an American Association for Accreditation of Laboratory An-
imal Care (AAALAC)-accredited facility.

Simianization of VRC07 IgG. Simianization of VRC07 was per-
formed as previously described (31). This process transferred the entire
complementarity-determining regions (CDRs) of human VRC07 (hu-

VRC07) onto homologous macaque germ line genes that were chosen
based on nucleotide sequence identity (Fig. 1A). The inferred macaque
homologs were the same as those previously reported for VRC01, since
VRC01 and VRC07 are derived from the same precursor B cell receptor
(14, 31, 34). The inferred macaque variable gene homologs for the heavy
and light chains were both 93% identical to the human germ line genes
comprising VRC07. The selected macaque heavy and light chain J genes
were 89 and 95% identical to the human germ line, respectively. Thirteen
of the 20 and 11 of the 32 framework region (FWR) somatic mutations
from the light chain and heavy chain of VRC07, respectively, were trans-
planted onto the homologous macaque germ line variable genes (Fig. 1A
and B). These mutations were predicted to be important based on the
crystal structure of VRC07 in complex with gp120 (14, 35) or have been
implicated in correct CDR loop folding (36). In total, the FWRs of the
light and heavy chain variable genes were 78 to 92% and 81 to 100%
similar to macaque germ line gene sequence, respectively (Fig. 1A). To
generate a full-length simianized immunoglobulin chain, macaque con-
stant regions were appended after the variable region of the heavy and
light chains.

Antibodies. Antibodies were made by transient transfection of 293F
cells using 293fectin transfection reagent (Invitrogen). Six days after
transfection, cell culture medium was clarified by centrifugation and fil-
tration through a 0.2-�m filter. Antibodies were purified from the cell
culture supernatant by using a protein A column on an Äkta fast protein
liquid chromatography (FPLC) instrument (GE Healthcare). All purifica-
tion equipment was pretreated with 1 N NaOH prior to use to eliminate
endotoxin contamination. The purified antibody was dialyzed into phos-
phate-buffered saline (PBS) and tested for endotoxin using the Limulus
amoebocyte lysate (LAL) assay (Lonza). Endotoxin above 1 endotoxin
unit (EU) per mg of antibody was removed by EndoTrap column chro-
matography (Hyglos).

Quantitative RSC3 ELISA. Enzyme-linked immunosorbent assays
(ELISAs) were performed by coating Nunc Maxisorp plates (Thermo
Fisher) with 2 �g/ml of resurfaced HIV core derivative 3 (RSC3) (9)
overnight at 4°C. The ELISA plates were blocked with a solution contain-
ing 5% skim milk and 2% bovine serum albumin (BSA) in Tris-buffered
saline– 0.05% Tween. To quantify a particular antibody in the plasma, a
standard curve was derived by serially diluting purified simian VRC07
(simVRC07) or huVRC07 IgG in blocking buffer and adding it to the
ELISA plate. Multiple dilutions of heat-inactivated macaque plasma were
incubated in the plate for 1 h. Preimmune plasma was used to determine
a baseline value for each macaque and was generally negative. Preimmune
plasma spiked with a known concentration of huVRC07 or simVRC07
served as the positive control. Binding of simVRC07 or huVRC07 was
detected with a horseradish peroxidase (HRP)-linked anti-macaque or
anti-human Fc gamma antibody, respectively (Southern Biotech). The
concentration of the VRC07 antibody in the macaque plasma was calcu-
lated based on a standard curve using Softmax Pro V5.0 software (Molec-
ular Devices).

Adeno-associated vector preparation. The AAV8 vector was pre-
pared as described previously, with the following modifications (20).
Briefly, 293T cells were transfected with an AAV8 capsid plasmid, a trans-
gene plasmid, and pHelp (Applied Viromics) at a 2:4:1 ratio by using the
Profection kit (Promega). The cell growth medium was replaced with
fresh Dulbecco’s modified Eagle’s medium (DMEM) (10% fetal bovine
serum and 1% penicillin-streptomycin) 16 h after transfection. The cell
culture supernatant was collected at 48, 96, and 120 h posttransfection,
filtered with a 0.45-�m membrane, and stored at 4°C until purification of
the vector. The vector was precipitated in 8% polyethylene glycol 8000
(PEG 8000) and 0.5 M NaCl for 2 to 16 h at 4°C. The precipitated vector
was pelleted at 5,000 rpm for 30 min at 4°C and resuspended in 1.37 g/ml
ultrapure cesium chloride (J. T. Baker). The vector was centrifuged for 24
h at 60,000 rpm in quick-seal tubes. After centrifugation, the tubes were
punctured and fractionated into a 96-well plate. Fractions with a refrac-
tive index between 1.3730 and 1.3685 were found to contain approxi-
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mately 90% of the vector. These fractions were pooled and subjected to a
second round of cesium chloride density centrifugation using the proce-
dure defined above. After a second round of centrifugation, the vector was
fractionated and pooled again according to the same refractive index
range. The vector was buffer exchanged into test formulation buffer 2 (10
mM Tris [pH 8], 100 mM sodium citrate) and stored at �80°C.

The vector titer was determined by absolute-quantification real-
time PCR using Power SYBR green PCR mix (Invitrogen) and prim-
ers pAAVioUBCenhancer_F (GCCTTAGAACCCCAGTATCAG) and
pAAVioUBCenhancer_R (ACTTTTCCTCGCCTGTTCCCG). The standard
curve was generated by using the transgene plasmid that was used for

vector production. The vector was treated with Turbo DNA-free DNase
(Ambion) for 30 min at 37°C prior to inclusion in real-time PCR assay
mixtures to eliminate DNA contamination from the transfection. Finally,
vector purity was confirmed by SDS-PAGE and InstaBlue staining. All
vectors prepared for in vivo administration were examined for endotoxin
contamination using the EndoLISA assay (Hyglos) and were found to be
below 1 EU per mg of vector protein.

In vitro AAV8 neutralization assays. Twenty thousand 293T cells
were plated into a 96-well plate 24 h prior to performing the assay. Ma-
caque plasma was diluted 5-fold, starting at a 1:20 dilution. A total of 1 �
1010 vector genomes (vg) of AAV8 encoding luciferase were incubated

FIG 1 Design of simian VRC07 IgG. (A) Amino acid alignment of huVRC07 and simVRC07 heavy and light chain variable regions. Residues that are identical
to the inferred germ line gene (Mac gl), shown on the top line, are indicated by periods. The complementarity-determining region (CDR) residues (red) and
grafted framework region (FWR) residues (green) are shown. HuVRC07 CDR3 is shown below the germ line sequence, since the original sequences after
recombination could not be predicted with a high degree of certainty. Somatic mutations in the FWRs that were not grafted to make simVRC07 are highlighted
in blue. The percent similarity of each segment of simVRC07 compared to the macaque germ line is denoted above the sequences. The number of grafted residues
is indicated in parentheses above each segment. (B) Tertiary sequence location of amino acids selected for engraftment onto the macaque germ line gene. Somatic
mutations in the FWRs of the heavy chain (HC) and light chain (LC) of huVRC07 are shown as spheres on the crystal structure (14). The CDRs (red) and somatic
mutations in the FWRs (blue or green) are colored to correspond to the alignment in panel A and are depicted in proximity to HIV-1 gp120 (gray). (C)
Comparison of HIV-1 neutralization titers of simVRC07 and huVRC07 by a TZM-bl cell assay. Neutralization titers (IC50s) (in micrograms per milliliter) of the
indicated antibodies are shown and are color-coded as follows: red, �0.1; orange, 0.1 to 0.99; yellow, 1 to 4.9; green, 5 to 50; white �50. NA indicates that the fold
change could not be calculated due to a lack of neutralization by both antibodies.
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with plasma or medium for 30 min at 37°C. The plasma and vector were
then added to the plate containing 293T cells. Forty-eight hours later,
luciferase was quantified by using the luciferase assay system (Promega)
and a Victor3 luminometer (PerkinElmer). Percent neutralization was
determined by the following equation: [1 � (luciferase expression in the
cultures with plasma/luciferase expression in the cultures without
plasma)] � 100. Percent neutralization curves were plotted in Prism ver-
sion 6 (GraphPad), and ID50s were calculated by fitting to a 4-parameter
curve.

Murine AAV gene transfer studies. The AAV8 vector was diluted up
to 100 �l with PBS. Four- or five-week-old C.B-17 SCID mice (Taconic)
were anesthetized and injected with 50 �l of AAV8 vector in the gastroc-
nemius muscle of each leg. Serum was collected from the tail vein of mice
and analyzed for VRC07 expression by quantitative RSC3 ELISA.

Anti-F2A intracellular cytokine staining. Intracellular cytokine
staining of cryopreserved macaque peripheral blood mononuclear cells
(PBMCs) was performed as previously described (37). Briefly, PBMCs
were thawed and rested overnight. The following day, the PBMCs were
stimulated for 6 h with 2 �g/ml of an overlapping pool of furin-2A (F2A)
peptides in the presence of 10 �g/ml of brefeldin A. PBMCs that under-
went the same process but that did not receive the peptide pool served as
negative controls, and their values were subtracted from those of the cor-
responding treatment wells. The PBMCs were then stained with a viability
dye and fluorochrome-conjugated antibodies against CD4, CD3, CD8,
CD69, interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-�), and
gamma interferon (IFN-�) for analysis on an LSRII flow cytometer (BD
Biosciences). Positivity thresholds for each cytokine were previously de-
termined by analysis of 100 seronegative samples.

Anti-F2A plasma antibody ELISA. ELISA plates were coated with 2
�g/ml of a pool of synthetic F2A peptides overnight at 4°C. The ELISA plates
were blocked with a solution containing 5% skim milk and 2% bovine serum
albumin in Tris-buffered saline–0.05% Tween. Heat-inactivated macaque
plasma was incubated in the plate for 1 h at several dilutions. Binding of
macaque IgG was detected with an HRP-linked anti-macaque Fc gamma
antibody (Southern Biotech) and a tetramethylbenzidine (TMB) substrate
(KPL). The absorbance at 450 nm in each well was determined with a Spec-
tramax instrument (Molecular Devices) and Softmax Pro V5.0 software (Mo-
lecular Devices).

AAV8 vector administration to nonhuman primates. On the day of
administration, AAV8 vectors were thawed on ice and diluted up to 1 ml
in PBS. Macaques were anesthetized, and a preimmune blood sample was
taken from the femoral vein. Subsequently, the macaque was adminis-
tered a single injection of 1 ml of the AAV8 vector in the quadriceps
muscle.

Immune suppression in nonhuman primates. At the initiation of the
study (day �9), rhesus macaques were placed under general anesthesia
and administered an injection of 5 mg/kg of cyclosporine (Sandimmune;
Novartis). Cyclosporine was diluted in sterile PBS and infused intrave-
nously at a rate of 1 ml/min for 60 min. This procedure was repeated the
following day. Beginning on day �6 and ending on day 28, macaques were
administered 15 to 30 mg/kg of a cyclosporine oral solution by oral gavage
every other day. AAV8 encoding simVRC07 IgG was administered on day
0, as stated above. For quantification of cyclosporine blood concentra-
tions, blood was obtained before drug administration and 1.5 to 2 h after
drug administration. Cyclosporine was quantified in whole blood by us-
ing the Dimension Systems cyclosporine assay (Siemens Diagnostics), and
its level was found to be �1,100 ng/ml post-drug administration.

Mucosal SHIV challenge studies. Macaques were sedated using gen-
eral anesthesia, and a prechallenge blood sample was taken from the fem-
oral vein. The hindquarters of the macaque were elevated, and 1 ml of
SHIV-BaLP4 (12,800 50% tissue culture infective doses [TCID50]/ml
when the titer was determined in TZM-bl cells) (obtained from Norman
Letvin) was delivered into the rectum (14, 15, 31, 38, 39). The hindquar-
ters of each macaque were kept elevated for 15 min to promote absorption
of the inoculum. To detect infection, the plasma viral load was determined

weekly by quantitative PCR. Specifically, virions were lysed and RNA was
isolated by using a QIAsymphony virus/pathogen midi kit (Qiagen). RNA
was reverse transcribed with Superscript III (Invitrogen). Viral cDNA was
quantified by real-time PCR in a StepOne PCR machine (Applied Biosys-
tems), using a SIV Gag-specific TaqMan primer set.

Monoclonal antibody blocking assays. ELISA plates were coated with
RSC3 and blocked with ELISA blocking buffer as stated above (9). A total
of 0.4 �g/ml of huVRC07 or simVRC07 was incubated alone or with a 1:20
dilution of either week 0 or week 9 plasma for 30 min at 37°C. Human
VRC03 was used as a negative-control antibody and incubated in the same
manner with plasma. The treated monoclonal antibodies (MAbs) were
then incubated in the RSC3-coated ELISA plates for 30 min at room
temperature. Binding of the monoclonal antibody to RSC3 was detected
with HRP-labeled anti-IgG Fc (Southern Biotech) and developed with a
TMB substrate according to the manufacturer’s protocol (KPL). The ab-
sorbance at 450 nm was read, and data were analyzed with Softmax Pro
V5.0 software (Molecular Devices).

Anti-simVRC07 biolayer interferometry binding assays. A fortéBio
Octet Red384 instrument was used to measure binding of plasma to con-
trol macaque IgG (NIH Nonhuman Primate Reagent Resource) and
simVRC07 IgG. Each antibody (10 �g/ml) was immobilized by amine
coupling to biosensors via activation in an ethyl-dimethyl-aminopropyl-
carbodiimide–N-hydroxy-succinimide activation mixture for 300 s in 10
mM acetate (pH 5). The biosensor reactivity was quenched by using 10
mM ethanolamine (pH 8.5). Typical capture levels were between 0.7 and
1 nm, and the variability within a row of eight tips did not exceed 0.1 nm.
Biosensor tips were then equilibrated for 300 s in 1% BSA–PBS prior to
binding measurements. Plasma samples from macaques were diluted 1:50
in a 1% BSA–PBS solution, and binding to each immobilized antibody
was assessed for 300 s. All the assays were performed with agitation set to
1,000 rpm in 1% BSA–PBS in order to minimize nonspecific interactions.
The final volume of all solutions was 100 �l/well. Assays were performed
at 30°C in solid-black 96-well plates (Greiner Bio-One).

SimVRC07 reverse immunohistochemistry. Pinch biopsy specimens
were taken from the rectum of rhesus macaques before and 3 weeks after
AAV8 injection. The biopsy specimens were fixed for 3 h at room temper-
ature in SafeFix II (Fisher Scientific), washed three times with 80% etha-
nol, and then stored overnight in 80% ethanol. The fixed tissues were
paraffin embedded until they were stained for simVRC07. Prior to stain-
ing for simVRC07, the tissue was deparaffinized, rehydrated, and then
blocked with Sniper (Biocare Medical). To detect simVRC07 IgG, the
tissue was incubated with fluorescein isothiocyanate (FITC)-labeled
RSC3, blocked by hydrogen peroxide, and incubated with anti-FITC-
HRP. Staining was developed with a diaminobenzidine peroxidase sub-
strate kit (Biocare Medical), and the tissue was dehydrated and mounted
onto slides.

In vitro HIV and SHIV neutralization assays. Monoclonal antibody
neutralization of HIV-1 isolates was assessed in single-cycle pseudovirus
assays by using TZM-bl cells as target cells, as previously described (40,
41). Plasma neutralization of replication-competent SHIV-BaLP4 was
performed similarly, using TZM-bl cells as targets. Briefly, macaque
plasma was serially diluted in culture medium, and virus was added to a
final volume of 50 �l. Virus and plasma were incubated for 30 min at
37°C, and target cells were then added to a final volume of 70 �l. After 48
h, luciferase expression by the TZM-bl cells was quantified for each well.
Neutralization was quantified as the percent reduction in luciferase ex-
pression in the cultures containing plasma compared to luciferase expres-
sion in TZM-bl cells infected in the absence of plasma. Neutralization
curves were fit by using a five-parameter nonlinear regression equation
calculated with JMP software (SAS, Cary, NC). The neutralization titers
were calculated as the concentration of monoclonal antibody or the
plasma dilution that inhibited 50% of the virus replication measured in
infected cells cultured alone (IC50 or ID50, respectively).

Statistical analyses. Statistical tests were performed by using Graph-
Pad Prism version 6.0 (GraphPad, La Jolla, CA).
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RESULTS
Simianization of VRC07 IgG. The human bnAb VRC07 (huVRC07)
was simianized to reduce its potential immunogenicity in ma-
caques (14, 31) (Fig. 1A and B). We used a CDR grafting proce-
dure that was previously shown to reduce the immunogenicity of
human VRC01 in macaques (31). The simianization procedure
yielded variable regions of each antibody chain that possess ma-
caque framework regions with minimal transplanted huVRC07
residues and all three huVRC07 CDRs appended to macaque con-
stant regions. To ensure that simianized VRC07 (simVRC07) re-
tained the neutralizing capacity of huVRC07, we compared their
activities in an in vitro TZM-bl pseudovirus assay. On a panel of 11
clade A, B, and C HIV-1 isolates, simVRC07 showed only a mod-
est reduction in potency (1.8-fold), measured as the geometric
mean IC50 titer, compared to huVRC07 IgG (Fig. 1C). We were
thus able to engineer a macaque version of huVRC07 that pos-
sessed neutralization activity similar to that of the wild-type hu-
man antibody.

Systemic simVRC07 expression after AAV8-vectored gene
transfer. Gene delivery and expression of CD4-like molecules and
immunoadhesins were previously demonstrated in macaques (26,
42). However, full-length antibodies have been expressed only by

AAV-mediated gene transfer in mice (17, 18, 20, 43). To deter-
mine whether full-length antibodies could be expressed in non-
human primates after intramuscular injection of a viral vector, we
constructed single-stranded-DNA AAV8 vectors encoding either
huVRC07 IgG (AAV8-huVRC07) or simVRC07 IgG (AAV8-sim-
VRC07) (18–20). The transgene cassette utilized the furin-2A an-
tibody expression system and removed all AAV open reading
frames (Fig. 2A). The inverted terminal repeats of AAV2 flank
each end of the transgene cassette to enable packaging of the heavy
and light chain genes of VRC07 into viral vectors. The transduc-
tion activity of each vector was assessed by injecting 2.5 � 1010

vector genomes (vg) of either vector intramuscularly into immu-
nodeficient mice. After vector administration, the serum concen-
tration of simVRC07 IgG peaked at 377 �g/ml 4 weeks after vector
administration, which was higher than the concentration of hu-
VRC07 IgG at the same time point. However, over the 9 weeks of
follow-up, the serum concentrations of huVRC07 and simVRC07
were both maintained at 	200 �g/ml in the mice (Fig. 2B). These
VRC07 concentrations were similar to the values previously re-
ported for VRC01 (20).

To determine whether an AAV vector could support the ex-
pression of a transgenic full-length antibody in primates, 1 � 1013

FIG 2 AAV8 delivery of simVRC07 genes confers systemic and mucosal expression in immunodeficient mice and immunocompetent rhesus macaques. (A) Vector
transgene design for single-stranded AAV8 vectors. ITR, inverted terminal repeat; pA, polyadenylation sequence. (B) Comparison of huVRC07 and simVRC07 serum
concentrations in SCID mice after administration of 2.5 � 1010 vg of AAV8 vectors. Values represent means 
 standard errors of the means of results from three or six
mice. (C) Plasma simVRC07 concentration in rhesus macaques administered 1 � 1013 vg of AAV8-simVRC07. Values indicate means 
 standard errors of the means
of data from triplicate independent measurements. (D) Immunoperoxidase staining for simVRC07 IgG in cross sections of macaque rectal tissue by HIV envelope
reverse immunohistochemistry. Rectal biopsy specimens were collected before and 3 weeks after AAV8-simVRC07 administration and stained with a labeled RSC3
protein. Original magnification, �40. Images are representative of staining performed on tissues from macaques DBM8 and AZ36.
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vg of the AAV8-simVRC07 vector were administered to each of
four rhesus macaques. After vector administration, we detected
simVRC07 IgG in the plasma of all four macaques within 1 week
(Fig. 2C). The plasma concentration of simVRC07 IgG peaked
between weeks 2 and 4 in the macaques, at 2.5 to 7.7 �g/ml. How-
ever, simVRC07 IgG was undetectable in the plasma of all ma-
caques by week 9. Similar expression kinetics were seen when
human VRC07 or simian VRC01 was expressed instead of sim-
VRC07 and when a 10-fold-lower dose of the AAV8-simVRC07
vector (1 � 1012 vg) was administered to macaques (data not
shown). A single administration of the vector was given in each
study because the macaques seroconverted for AAV8 neutralizing
antibodies after vector injection (Table 1).

To determine whether simVRC07 IgG trafficked to gut muco-
sal surfaces when delivered by intramuscular AAV8 vector injec-

tion, we performed immunohistochemistry on rectal biopsy spec-
imens using a labeled HIV Env core to detect simVRC07 IgG.
Immunoperoxidase staining of week 3 rectal tissue revealed that
simVRC07 IgG was capable of binding the envelope in epithelial
cells in the crypts and bordering the rectal lumen (Fig. 2D). This
staining was not seen in samples taken prior to treatment (week 0).
The presence of simVRC07 IgG at this mucosal site indicated that
the antibody produced from muscle cells trafficked to a mucosal
site where it could potentially protect against virus transmission.

Development of anti-idiotypic antibodies is associated with
decreased simVRC07 expression. To determine whether a ma-
caque humoral response to simVRC07 was elicited by AAV8-sim-
VRC07 administration, we assayed for binding antibodies against
simVRC07 IgG. Specific antibodies to simVRC07 arose between 2
and 4 weeks after vector administration, and their levels increased
over the 12 weeks of study (Fig. 3A). The magnitude of these
anti-simVRC07 antibodies correlated inversely with the sim-
VRC07 IgG plasma concentrations in the four macaques (P �
0.0001) (Fig. 3B). As expected, substantial antitransgene re-
sponses were also observed when AAV8-huVRC07 was adminis-
tered to macaques (data not shown).

We asked whether these antibodies recognized the simVRC07
antigen binding site by analyzing whether the macaque plasma
could block binding of simVRC07, huVRC07, or a control CD4

TABLE 1 AAV8 plasma neutralization titers

Animal

ID50

Wk 0 Wk 3

AZ36 �20 3,994
AZ66 �20 176
DBM8 �20 4,269
2F7 �20 303

FIG 3 Characterization of anti-simVRC07 humoral immunity in macaques. (A) Time course of anti-simVRC07 antibody levels measured by biolayer interfer-
ometry in macaques administered 1 � 1013 vg of AAV8-simVRC07 (Fig. 2C). Plasma immunoglobulin binding to simVRC07 (solid lines) or control macaque
IgG (dashed lines) is shown for each macaque. Values shown are means 
 standard errors of the means from triplicate independent measurements. (B) Spearman
correlation between the plasma simVRC07 concentration and the anti-simVRC07 plasma antibody response, quantified as described above for panel A
(Spearman r � �0.7819). Symbols are coded to correspond to each rhesus macaque in panel A. Anti-simVRC07 responses were inversely correlated with
detectable plasma simVRC07 concentrations. (C) Blocking of simVRC07, huVRC07, or VRC03 binding to HIV-1 gp120. Macaque plasma obtained before
AAV8-simVRC07 vector administration (week 0) or 9 weeks after vector administration (week 9) was tested for blocking of the monoclonal antibodies. Binding
in the presence of no plasma served as the baseline binding control. The means from triplicate measurements are shown.
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binding-site antibody, VRC03, to a resurfaced stabilized core
(RSC) of HIV-1 Env, RSC3 (9). Before vector administration, no
blocking activity was detectable. In contrast, plasma from three of
the four macaques blocked simVRC07 and huVRC07 binding to
the HIV-1 envelope (Fig. 3C). No effect on a divergent CD4bs
MAb, VRC03, was observed, suggesting an anti-idiotypic compo-
nent. Plasma from one macaque inhibited binding by simVRC07,
huVRC07, and, to a lesser extent, VRC03. The moderate blocking
of VRC03 by this serum was possibly due to the recognition of
framework residues shared between all three antibodies, since
VRC07 and VRC03 are derived from the same VH gene. The bind-
ing of huVRC07 and its ability to block the interaction with HIV-1
Env indicated that the macaques generated antibodies to the vari-
able antigen binding regions of simVRC07 and huVRC07. There-
fore, in general, the administration of AAV8-simVRC07 vectors in
macaques elicited antibodies targeting the huVRC07 residues in
simVRC07.

Plasma IgG and CD4� T cells against the furin-2A peptide
arise after vector administration. The F2A sequence used to con-
nect the heavy and light chain genes contains the 2A sequence
from foot-and-mouth disease virus and thus could potentially be
immunogenic when expressed in vivo. Although we used an opti-
mized version of the F2A sequence designed to eliminate this se-
quence from the antibody (19), it remained possible that T and B
cells could react with the F2A peptide delivered in the AAV8 vec-
tor to macaques. For cellular responses, intracellular cytokines
produced by CD4 and CD8 T cells after F2A peptide stimulation
were assessed in cryopreserved PBMCs before AAV8-simVRC07
delivery and at two time points after vector delivery. None of the
four animals possessed CD8� T cells that responded to F2A pep-
tide stimulation (Fig. 4A). In contrast, macaque AZ36 possessed
CD4� T cells after vector administration that produced IFN-�,
TNF-�, and IL-2 in response to F2A peptides (Fig. 4B). CD4� T
cells isolated after AAV8 vector administration from macaque
AZ66 were also stimulated by F2A peptides to produce TNF-� and
IL-2 (Fig. 4B). These same two monkeys as well as an additional
macaque possessed moderate levels of anti-F2A antibodies, which
were not present 2 weeks after vector administration but were
evident by week 8 (Fig. 4C).

Suppression of host immunity increases simVRC07 expres-
sion following gene transfer. Cross-species immunogenicity lim-
its the persistence of human proteins in nonhuman primates (30).
Given the high concentrations of simVRC07 expressed by the
same AAV8 vectors in immunodeficient mice, we hypothesized
that the vectors could function similarly in nonhuman primates in
the absence of transgene immunity. We therefore attempted to
suppress the macaque immune response to the transgene by ad-
ministering cyclosporine (CsA). This approach was previously
found to permit AAV-mediated expression of human factor IX in
macaques (33). CsA was initially administered to six macaques 9
days prior to AAV8-simVRC07 vector administration. The
plasma concentration of simVRC07 IgG increased in the ma-
caques over the first 3 weeks, reaching a peak of 66 �g/ml in one
macaque and a mean peak plasma concentration of 38.12 �g/ml
for all six macaques (Fig. 5A and B). In one macaque, simVRC07
expression reached 41 �g/ml in plasma, highlighting an initial
effect of the treatment, but antitransgene antibodies rendered
simVRC07 undetectable despite ongoing CsA administration
(Fig. 5A). SimVRC07 expression persisted in the remaining five
macaques during the CsA regimen, and the peak concentrations of

simVRC07 were significantly higher than those observed in ma-
caques that were not immunosuppressed, although the macaques
were not age and weight matched between groups (P � 0.0095 by
a Mann-Whitney test) (Fig. 5B). Immune-suppressive treatment
was halted 4 weeks after vector injection to determine whether
simVRC07 expression would continue and to assess whether an-
titransgene responses would arise. The simVRC07 IgG plasma
concentration decreased in all of the animals; however, three out

FIG 4 Cellular and humoral immune responses against the F2A peptide in
macaques administered 1 � 1013 vg of AAV8-simVRC07. (A and B) Intracel-
lular cytokine staining of CD8� T cells (A) and CD4� T cells (B) stimulated
with a pool of overlapping F2A peptides. The dotted line represents the previ-
ously determined threshold for positivity for each cytokine (37). Due to PBMC
availability, T cell responses were analyzed at 12 and 25 weeks after vector
administration for monkeys AZ36 and DBM8 and at 5 and 7 weeks after vector
administration for monkeys AZ66 and 2F7. (C) ELISA of direct plasma IgG
binding to pooled F2A peptides. The binding titer is represented as the log10

area under the curve (AUC) for the four macaques listed in panels A and B over
time.
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of the six macaques maintained detectable simVRC07 IgG in the
plasma for the following 16 weeks (Fig. 5A). Examination of trans-
gene-specific antibodies showed that all three macaques in which
simVRC07 was diminished to undetectable concentrations pos-
sessed antitransgene antibodies (Fig. 5C). In contrast, the three
macaques with detectable circulating simVRC07 did not generate
transgene-specific binding antibodies even after the cessation of
immune-suppressive treatment (Fig. 5C).

AAV8-simVRC07 confers protection against SHIV infection.
To determine whether AAV8 transfer of neutralizing antibody
genes could protect macaques from mucosal SHIV infection, the
monkeys given CsA and AAV8-simVRC07 were intrarectally chal-
lenged with CCR5-tropic SHIV-BaLP4 5.5 weeks after vector ad-
ministration. The control group of macaques received a CsA dos-
ing regimen identical to that of the treatment group and were
administered an AAV8 vector encoding a simianized non-HIV
antibody (AAV8-control IgG) on day 0. The plasma concentra-
tion of simVRC07 IgG on the day of challenge in the macaques
given AAV8-simVRC07 ranged from 0 to 38.9 �g/ml (Fig. 5A).
Similarly, for the macaques with detectable simVRC07, the in vitro

neutralization titers (ID50s) against the challenge stock varied
from 1:31 to 1:1,028 (Fig. 6A). Upon challenge, all five macaques
given AAV8 encoding control IgG became infected (Fig. 6B). Four
out of six macaques administered AAV8-simVRC07 resisted in-
fection (P � 0.0455 by Fisher’s exact test) (Fig. 6B). Macaque
A11E035 had no detectable simVRC07 in circulation and was ex-
pectedly one of the infected animals. The other infected macaque,
A11E045, displayed the lowest peak and day-of-challenge concen-
trations of simVRC07 IgG among all of the macaques in the
AAV8-simVRC07 group and also showed anti-simVRC07 plasma
activity (Fig. 5A and C).

DISCUSSION

Broad and potent neutralizing antibodies to HIV-1 provide a po-
tential tool to prevent infection in the absence of an effective vac-
cine (13). Because passive infusion of antibodies requires multiple
and sustained treatments, we explored whether HIV-1 bnAb gene
delivery could protect nonhuman primates from mucosal SHIV
infection. Transfer of full-length immunoglobulin genes in the
absence of immune suppression yielded antibody concentrations

FIG 5 Transient immune suppression during gene transfer increases peak simVRC07 concentrations and duration of expression. (A) SimVRC07 plasma
concentrations in five rhesus macaques treated with cyclosporine (CsA), as indicated on the x axis. AAV8-simVRC07 was administered at week 0 (solid vertical
line). The time point for SHIV-BaLP4 challenge is shown as a dashed vertical line. Values represent the means 
 standard errors of data from triplicate
independent measurements. (B) Comparison of peak plasma simVRC07 concentrations after AAV8-simVRC07 injection in untreated macaques (Fig. 2C) or the
macaques treated with CsA listed in panel A. The mean peak concentration 
 standard error of the mean for each group of animals is shown by the horizontal
bars. Significantly higher peak plasma concentrations were observed for macaques that received CsA than for untreated macaques (P � 0.0095 by Mann-Whitney
test). (C) Biolayer interferometry binding of plasma immunoglobulin from the macaques listed in panel A to macaque IgG (left) and simVRC07 IgG (right). The
duration of CsA treatment is indicated on the x axis. Mean values 
 standard errors of the means of data from triplicate independent measurements are shown.
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of 	5 �g/ml on average in nonhuman primates, which was in-
creased to an average of 38 �g/ml when macaques were immune
suppressed at the time of vector delivery. In a previous study,
Johnson et al. injected a single-stranded AAV1 vector encoding a
soluble CD4 immunoadhesin and readily detected significant lev-
els in macaques (26). In the present study, similar detectable levels
were also reached with an AAV8 vector expressing full-length IgG,
suggesting that AAV-vectored gene delivery in nonhuman pri-
mates is not limited to immunoadhesins. Johnson and colleagues
observed concentrations approaching 200 �g/ml for two other
immunoadhesins in macaques. These immunoadhesins differed
from the CD4 immunoadhesin in that they were derived from
natural macaque antibodies and were delivered with self-comple-
mentary AAV vectors (26, 44). The extent to which each of these
differences accounts for the enhanced expression in macaques is
presently unclear. Similar to the CD4 immunoadhesin, the pres-
ent study used a single-stranded DNA AAV vector rather than a
self-complementary AAV vector. The advantages of each vector
format are still debated, particularly with regard to the size of the
transgene that each vector carries and the expression level that
each type affords.

The passive transfer of VRC01 protein suggests that the accu-
mulation of antibody in mucosal tissue improves protection
against mucosal SHIV challenge (38). Mucosal localization of an-
tibodies produced by gene transfer presumably contributes to
protective efficacy. Immunohistochemistry of the rectal tissue in-
dicated that simVRC07 IgG expressed from intramuscular gene
delivery localizes to mucosal tissue in a manner similar to that of a
passively transferred bnAb protein (31, 38). Thus, it seems that

once the transgenic antibody is expressed in vivo, it traffics to the
mucosa, where it can counteract virus infection in a manner anal-
ogous to that of a passively transferred antibody protein.

Protection against mucosal infection in macaque models of
HIV infection has been demonstrated after passive transfer of
monoclonal antibodies (45–48), but it has not been shown previ-
ously after gene transfer of bnAbs. We show here that gene transfer
of bnAb genes yields sufficient antibody expression in nonhuman
primates to confer protection. Previous studies of passive protein
transfer have shown that the probability of protection against viral
challenge is related to the plasma antibody concentration (14, 49).
In our previous studies with VRC01 and the same SHIV-BaLP4
challenge, we infused VRC01 at various doses and used a regres-
sion analysis to correlate the level of plasma antibody with in vivo
protection (14, 15, 38). These data revealed that 50% protection
was achieved at a plasma VRC01 concentration of 2.54 �g/ml.
Monkeys A11E006 and A11E045 both had plasma concentrations
of simian VRC07 in the 1- to 2-�g/ml range, and one of the two
macaques became infected. This result is consistent with the prob-
ability of protection for VRC01-like antibodies being �50% at
concentrations of �2.54 �g/ml (14, 15, 38).

The macaques in this study were treated with CsA prior to
SHIV-BaLP4 challenge. Cyclosporine has been shown to inhibit
SIV and HIV-1 replication in vitro (50–52). However, the inhibi-
tory effects of cyclosporine were not a factor for our challenge, as
these macaques were challenged 11 days after the cessation of CsA
treatment (5.5 weeks after AAV injection), and all macaques given
control AAV8 vectors after cyclosporine treatment became in-
fected (Fig. 6B).

FIG 6 SimVRC07 gene transfer protects against mucosal SHIV challenge. (A) Plasma neutralization titers (ID50s) against the SHIV-BaLP4 challenge stock on the
day of challenge. The neutralization titer in the plasma for monkey A11E035 was not determined (ND), since it did not have detectable simVRC07 in its plasma
at this time point. The ID50 is shown as the reciprocal plasma dilution and is color-coded as follows: red, �500; orange, 300 to 500; yellow, 100 to 299; green, 10
to 99; white, �10. Murine leukemia virus (SVA-MLV) was analyzed as a negative-control virus. (B) Plasma viral loads in rhesus macaques administered AAV8
vectors encoding control IgG (left) or simVRC07 (right) and challenged with SHIV-BaLP4 5.5 weeks later. Prior to SHIV-BaLP4 challenge, both groups of
animals received the same course of CsA treatment beginning 1 week before AAV8 administration and ending at week 4. Significantly more macaques were
infected in the control group than in the simVRC07 group (treatment group, n � 6; control group, n � 5 [P � 0.0455 by Fisher’s exact test]).
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Inhibitory antibodies developed against the transgenic anti-
body simVRC07 in macaques in the current study, despite our
efforts to simianize the antibody. In our previous study of passive
protein transfer, human VRC01 was immunogenic in two ma-
caques given a single 20-mg/kg dose, but simian VRC01 was not
(31). The development of antibodies against simVRC07 was not
entirely unexpected, as it contains all three huVRC07 CDRs in
their entirety and 24 human residues within its framework re-
gions. The development of antibodies against huVRC07 in hu-
mans would be unexpected, as most human antibodies, when de-
livered by passive protein transfer, are not immunogenic (53).
However, for comparison to our previous studies with simian
VRC01, we passively transferred 5 mg/kg of simian VRC07 pro-
tein into two macaques and did not observe any detectable anti-
simian VRC07 plasma antibody responses. Therefore, passive
transfer of antibody protein may not be predictive of the immu-
nogenicity of AAV-delivered antibodies. Although we generally
have observed more anti-antibody responses after administration
of the vector than after administration of protein, we cannot cur-
rently draw definitive conclusions about the relative immunoge-
nicity of each modality. Future studies will help to define the rel-
ative contribution of each modality. Vectored gene delivery of a
human antibody in humans has yet to be reported; therefore,
whether antitransgene antibodies will be observed remains to be
determined.

The antitransgene antibodies observed here were inhibitory
but more importantly were correlated inversely with simVRC07
plasma levels (Fig. 3B). This inverse correlation suggested that
these antibodies were binding to circulating simVRC07 IgG in
macaques and contributed to its clearance. Thus, antitransgene
antibody responses represent one factor that is predictive of the
failure of AAV-vectored antibody gene transfer. We show here
that transient immunosuppressive monotherapy is sufficient to
increase the longevity of transgene expression in most cases. These
results corroborate data from previous studies that used immune
suppression to eliminate anti-factor IX antibodies in canines and
macaques after AAV delivery (33, 54). Reduction of transgene
immunogenicity has also been achieved by reducing the vector
dose at single or multiple injection sites (54–56). It is possible that
the two doses tested here were still above the threshold for reduc-
ing transgene immunogenicity and that administering a very low
dose of the vector may still reduce transgene immunogenicity.
However, lowering the dose of the vector to prevent transgene
immunogenicity will have to be balanced with the need to gener-
ate protective concentrations of the transgenic antibody.

The molecular mechanisms that resulted in persistent expres-
sion of the HIV-1 bnAb in nonhuman primates after cessation of
immune suppression are presently unclear. One hypothesis is an
induction of immune tolerance to the transgenic antibody. B cells
attempting to respond to simVRC07 during immune suppression
would not receive the T cell help that is required according to the
two-signal activation model (57). These B cells would subse-
quently be clonally deleted or rendered anergic, reducing the an-
titransgene humoral response once immune suppression is
halted. Alternatively, the antigen persistence model could explain
the induction of tolerance in our system (58). According to this
model, the persistence of simVRC07 in secondary lymphoid or-
gans over the 4-week immunosuppression period would lead to
tolerance that prevents the development of anti-simVRC07 anti-
bodies after withdrawal of immune suppression.

The global health community awaits a protective intervention
to curb the spread of the HIV-1 pandemic in at-risk populations.
AAV-vectored bnAb gene transfer can protect humanized mice
from HIV-1 infection and may be able to similarly create a sus-
tained protective barrier in humans. In support of this notion, we
show here that gene transfer of a bnAb can protect macaques from
mucosal SHIV infection �1 month after vector delivery. These
results extend the protective efficacy seen previously in human-
ized mice (21) to SHIV infection in nonhuman primates and pro-
vides support for further investigation in humans.
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